Brain derived neurotrophic factor inhibits apoptosis in enteric glia during gut inflammation
نویسندگان
چکیده
BACKGROUND Enteric glia cells (EGCs) are essential for the integrity of the bowel. A loss of EGCs leads to a severe inflammation of the intestines. As a diminished EGC network is postulated in Crohn's disease (CD), we aimed to investigate if EGCs could be a target of apoptosis during inflammation in CD, which can be influenced by Brain derived neurotrophic factor (BDNF). MATERIAL/METHODS GFAP, BDNF and cCaspase-3 were detected in the gut of patients with CD. Primary EGC cultures were established and cultivated. Tyrosine receptor kinase (TrkB) receptors on these cells were investigated by western blot and immunofluorescence. Rate of apoptosis was induced by tumor necrosis factor (TNF-alpha) and interferon (IFN-gamma). Apoptosis was determined by a fluorometric caspase 3/7 activation assay after preincubation of these cells with BDNF or neutralizing anti-BDNF antibodies. RESULTS Mucosal GFAP-positive EGCs undergo apoptosis revealed by cCaspase-3 in the gut of patients with CD expressing BDNF highly. The combination of TNF-alpha and IFN-gamma was able to induce apoptosis in primary EGCs, whereas these factors alone did not. Brain derived neurotrophic factor (BDNF) attenuate glia cell apoptosis to a small extent, but neutralizing antibodies against BDNF dramatically increased apoptosis. CONCLUSIONS Mucosal EGC apoptosis is an important finding in the gut of patients with CD. Proinflammatory cytokines, which are highly increased in CD, induce EGC apoptosis, whereas the neurotrophin BDNF might be protective for EGC. Since EGCs are implicated in the maintenance of the enteric mucosal integrity, EGC apoptosis may contribute to the pathophysiological changes in CD.
منابع مشابه
Distribution of enteric glia and GDNF during gut inflammation
BACKGROUND The enteric glia network may be involved in the pathogenesis of inflammatory bowel disease (IBD). Enteric glia cells (EGCs) are the major source of glial-derived neurotrophic factor (GDNF), which regulates apoptosis of enterocytes. The aim of the study was to determine the distribution of EGCs and GDNF during gut inflammation and to elucidate a possible diminished enteric glia networ...
متن کاملV. Genes, lineages, and tissue interactions in the development of the enteric nervous system.
The enteric nervous system is derived from the vagal, rostral-truncal, and sacral levels of the neural crest. Because the crest-derived population that colonizes the bowel contains multipotent cells, terminal differentiation occurs in the gut and is influenced by both the enteric microenvironment and the responsivity of multiple lineages of precursors. Enteric growth factor-receptor combination...
متن کاملGDNF protects enteric glia from apoptosis: evidence for an autocrine loop
BACKGROUND Enteric glia cells (EGC) play an important role in the maintenance of intestinal mucosa integrity. During the course of acute Crohn's disease (CD), mucosal EGC progressively undergo apoptosis, though the mechanisms are largely unknown. We investigated the role of Glial-derived neurotrophic factor (GDNF) in the regulation of EGC apoptosis. METHODS GDNF expression and EGC apoptosis w...
متن کاملP-52: Brain-Derived Neurotrophic Factor Promotes The Development of Human Ovarian Early Follicles during Growth In Vitro
Background Cryopreservation of ovarian cortex is increasingly used to preserve fertility before cancer therapy. Recently, studies show that Brain-derived neurotrophic factor (BDNF) may be involved in oocyte maturation. Brain-derived neurotrophic factor (BDNF) is member of neurotrophin family that has anti-apoptotic effects on nervous system. Recent researches show that it also plays key role in...
متن کاملMicroglia-Müller glia cell interactions control neurotrophic factor production during light-induced retinal degeneration.
Activation of microglia commonly occurs in response to a wide variety of pathological stimuli including trauma, axotomy, ischemia, and degeneration in the CNS. In the retina, prolonged or high-intensity exposure to visible light leads to photoreceptor cell apoptosis. In such a light-reared retina, we found that activated microglia invade the degenerating photoreceptor layer and alter expression...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 18 شماره
صفحات -
تاریخ انتشار 2012